Home
Class 12
MATHS
If a and b are real and i=sqrt(-1) then ...

If a and b are real and `i=sqrt(-1)` then `sin[i ln((a+ib)/(a-ib))]` is equal to 1) `(2ab)/(a^(2)-b^(2))` 2) `(-2ab)/(a^(2)-b^(2))` 3)`(2ab)/(a^(2)+b^(2))` 4) `(-2ab)/(a^(2)+b^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

a^(2)b^(3)x2ab^(2) is equal to: 2a^(3)b^(4)(b)2a^(3)b^(5)(c)2ab (d) a^(3)b^(5)

Prove that tan(i log_(e)((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a,b in R^(+))

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

(a^2+b^2+2ab)-(a^2+b^2-2ab)

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

(a ^ (2) + b ^ (2)) / (a ^ (2) -b ^ (2)) = (sin (A + B)) / (sin (AB))

|[1+a^(2)-b^(2),2ab,-2b],[2ab,1-a^(2)+b^(2),2a],[2b,-2a,1-a^(2)-b^(2)]| =