Home
Class 12
MATHS
Solve: log(9)x+log(x)9+log(x)x+log(9)9=...

Solve:
`log_(9)x+log_(x)9+log_(x)x+log_(9)9=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

x=log_(5)3+log_(7)5+log_(9)7

Solve log_(3)x+log_(9)x+log_(27)x=(11)/(2)

Solve the following equation for x: 9^(log_(3)(log_(2)x))=log_(2)x-(log_(2)x)^(2)+1

What is the value of x if log_(3)x+log_(9)x+log_(27)x+log_(81)x=(25)/(4)?

Find the number of solution(s) of the equation log_(9)(x+1)*log_(2)(x+1)-log_(9)(x+1)-log_(2)(x+1)+1=0

The number of integral solutions of log_(9)(x+1).log_(2)(x+1)-log_(9)(x+1)-log_(2)(x+1)+1lt0 is

Solve: log_(3)(log_(3)x+(1)/(2)+9^(x))=2x