Home
Class 12
MATHS
If a and b are real and i=sqrt(-1) then ...

If a and b are real and `i=sqrt(-1)` then `sin[i ln((a+ib)/(a-ib))]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

tan (i log ((a + ib) / / a-ib))) =

If (x+iy)^(1//3)=a+ib,"where"i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

If a+ib=sqrt(3+4i), then a and b=?

The value of (tan(i*log((a-ib)/(a+ib)))) is

2549. If sum i^((2n+1)!)=a+ib, where i=sqrt(-1, then a-b, is )

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

If a,b are real and a^(2)+b^(2)=1, then show that the equation (sqrt(1+x)-i sqrt(1-x))/(sqrt(1+x)+i sqrt(1-x))=a-ib is satisfied y a real value of x.