Home
Class 12
MATHS
If f(a)=log((2+a)/(2-a)) for 0 < a < 2 t...

If `f(a)=log((2+a)/(2-a))` for `0 < a < 2` then `1/2 f((8a)/(4+a^2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(a) = log((1-a)/(1+a)) for 0 < a < 1 then f((2a)/(1+a))

IF f(a)=log((2+a)/(2-a)) then 1/2f((8a)/(4+a^2)) =…………..

If f(x)=log.(1-a)/(1+a)" for " 0ltalt1 then f((2a)/(1+a^(2)))=

If f(x)=log(sec^(2)x)^(cot^2x) for xne0 and k for x=0 is continuous at x=0 , then k is

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{(log_((1-2x))(1+2x)", for " x!=0),(k", for " x=0):} , then k=

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

If f(x) is continuous at x=0 , where f(x)=(log(2+x)-log(2-x))/(tan x) , for x!=0 , then f(0)=