Home
Class 10
MATHS
The value of [(secA+tanA)(1-sinA)] is eq...

The value of `[(secA+tanA)(1-sinA)]` is equal to `tan^2A(b)sin^2A` (c) `cosA` (d) `sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [(secA+tanA)(1-sinA)] is equal to (a) tan^2A(b)sin^2A (c) cosA (d) sinA

Prove that : (secA+tanA)(1-sinA)=cosA

Prove that : (secA+tanA)(1-sinA)=cosA

Prove that : (secA+tanA)(1-sinA)=cosA

Prove: (secA-tanA)^2=(1-sinA)/(1+sinA)

The value of ("cosec"a-sina)(seca-cosa)(tana+cota) is

( secA+tanA )( 1−sinA )= (a)secA (b) sinA (c) cosec A (d) cosA

secA(1-sinA)(secA+tanA)=1

Choose the correct option.Justify your choice:(iii) (secA+tanA)(1-sinA) = a)secA b)sinA c)cosecA d)cosA

Sin A.cos A.tanA+cosA.sinA.cotA is equal to: