Home
Class 12
MATHS
If x=a cos^2 theta sintheta and y=a sin^...

If `x=a cos^2 theta sintheta` and `y=a sin^2 theta cos theta`, then `(x^2+y^2)^3/(x^2y^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= a cos^(2) theta sin theta and y= a sin^(2) theta cos theta , " then " ((x^(2)+y^(2))^(3))/(x^(2)y^(2))=

If x= sin^(2)theta* cos theta and y=sin theta cos^(2)theta,"then" :

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If x = a cos theta - b sin theta and y = a sin theta + b cos theta, prove that x^2 + y^2 = a^2 + b^2.

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=

If x=a cos^(3) theta sin^(2) theta, y= a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p, q, in N) is independent of theta , then