Home
Class 12
MATHS
tanA = a tanB, sinA = b sinB=>(b^2-1)/(a...

`tanA = a tanB, sinA = b sinB=>(b^2-1)/(a^2-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tanA = a tanB, sinA = bsinB rArr (b^(2) - 1)/(a^(2) - 1) =

If A and B are positive acute angles and sinA =3/5,cosB=(15)/(17) , find the value of (tanA-tanB)/(1+tanAtanB) .

If A+B=90^(@) ,then sqrt((tanA.tanB+tanA.cotB)/(sinA.secB)-(sin^(2)B)/(cos^(2)A)) =?

If cosA=tanB,cosB=tanCand cosC=tanA, Show that sinA=sinB=sinC=2*sin18^o

If A and B are acute angles such that tanA=(1)/(3) , tanB=(1)/(2) and tan(A+B)=(tanA+tanB)/(1-tanAtanB) , Then find the value of A+B .

If 2tanA = 3tanB = 1, then what is tan(A-B) equal to?

Statement:1 In triangleABC , if a lt b sinA , then the triangle is possible. And Statement:2 In triangleABC a/(sinA)= b/(sinB)

If A and B are acute angles and sinA/sin B= sqrt2 and tanA/tanB = sqrt3 , find A and B.

If tanA=(1)/(2) and tanB=(1)/(3) , then tan(2A+B) is equal to