Home
Class 8
MATHS
p^(4)-(p+q)^(4)...

`p^(4)-(p+q)^(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise p ^(4) + q ^(4) + p ^(2) q ^(2).

Divide: p^(4)-4q^(4) by p-sqrt(2)q

Find the products: (7p^(4)+q)(49p^(8)-7p^(4)q+q^(2))

If log_(5)p = a and log_(2)q=a , then prove that (p^(4)q^(4))/(100) = 100^(2a-1)

Let's prove (p+q)^4 - (p-q)^4 = 8pq(p^2 + q^2)

Suppose p,q,r and real number such that q=p(4-p),r=q(4-q),p=r(4-r) . The maximum possible value of p+q+r is

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo