Home
Class 12
MATHS
If y=sin(logx), prove that x^2(d^2y)/(d...

If `y=sin(logx),` prove that `x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+\ y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If y=Acos(logx)+\ Bsin(logx) , prove that x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=sin(logx) prove that x^2(d^2y)/dx^2+xdy/dx+y=0 .

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .