Home
Class 10
MATHS
Figure 2.23 shows the graph of the polyn...

Figure 2.23 shows the graph of the polynomial `f(x)=a x^2+b x+c` for which (FIGURE) (a) `a<<0,\ \ b>>0\ a n d\ c >0` (b) `a<0, blt0 and cgt0` (c) `a<0,\ b<0\ a n d\ c<0` (d) `a >0,\ b >0\ a n d\ c<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a lt 0, b gt 0 and c lt 0 , then the point P(a, b, -c) lies in the octant

If (x-a) (x-b) lt 0 , then x lt a, and x gt b .

If a lt b and clt0 , then (a)/(c)gt(b)/(c)

The roots of the equation ax^2+bx + c = 0 will be imaginary if, A) a gt 0 b=0 c lt 0 B) a gt 0 b =0 c gt 0 (C) a=0 b gt 0 c gt 0 (D) a gt 0, b gt 0 c =0

If a lt 0 and b lt 0 , then (a +b)^(2) gt 0 .

If a lt 0, b gt 0 , then sqrt(a)sqrt(b) equal to

If f(c) lt 0 and f'(c) gt 0 , then at x = c , f (x) is -

the area of region for which 0 lt y lt 3 - 2x-x^2 and x gt 0 is