Home
Class 11
MATHS
" 3"(5)/(8)log(x)log(18)(sqrt(2)+58)=(1)...

" 3"(5)/(8)log_(x)log_(18)(sqrt(2)+58)=(1)/(8)*" Then the ralue of "1000x

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) Then the value of 1000x is equal to

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of x .

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of 'x'.

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of 'x'.

If log_(x)log_(18)(sqrt(2)+sqrt(8))=-(1)/(2) then the value of x is equal to

If log_x log_18 (sqrt2+sqrt8)=1/3. Then the value of 1000 x is equal to

If log_(sqrt(8))x=3(1)/(3), find the value of x

log_(3)(5+x)+log_(8)8=2^(2)