Home
Class 14
MATHS
[" 4.Prove that: "],[qquad [" (i) "1+i^(...

[" 4.Prove that: "],[qquad [" (i) "1+i^(2)+i^(4)+i^(6)=0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

1 + i^(2n) + i^(4n) + i^(6n)

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

Prove that 1+i^2+i^4+i^6 =0

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Show that 1+i^2+i^4+i^6=0

Simplify : (1+i^2) +i^4+i^6 .

1+i^(2)+i^(4)+i^(6)+i^(8)++i^(20)

Prove that : (1-i)^2= -2i .