Home
Class 12
MATHS
" Ab "lim(n rarr oo)(n^(alpha)sin^(2)n!)...

" Ab "lim_(n rarr oo)(n^(alpha)sin^(2)n!)/(n+1),alpha in(0,1)" is equal "oo

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_ (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0

Evaluate: lim_(n rarr oo)(n^(p)sin^(2)(n!))/(n+1)

lim_(n to oo) (n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1 , is equal to-

lim_(n rarr oo)2^(n)sin(a)/(2^(n))

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo)3^(1/n) equals

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)