Home
Class 12
MATHS
int(0)^( pi/2)sin^(4)(x)cos^(5)(x)dx=...

int_(0)^( pi/2)sin^(4)(x)cos^(5)(x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(2pi)sin^(4).(x)/(2)cos^(5).(x)/(2)dx=0

If int_(0)^(pi//2) sin^(4) x cos^(2)x dx = (pi)/(32) then int_(0)^(pi//2) cos^(4) x sin^(2) x dx=

int_(0)^(pi) sin^(4) x cos^(5) x dx

int_(0)^(2 pi)sin^(4)((x)/(2))*cos^(5)((x)/(2))dx

Evaluate : int_(0)^( pi/2)(sin^(5)x)/(sin^(5)x+cos^(5)x)dx

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

(i) int_(0)^(pi//2)(sin^(7)x)/((sin^(7)x+cos^(7)x))dx=(pi)/(4) (ii) int_(0)^(pi//2)(sin^(5)xdx)/((sin^(5)x+cos^(5)x))dx=(pi)/(4)

Evaluate the integrals . int_(0)^(pi//2) (sin^(5)x)/(sin^(5)x + cos^(5)x)dx