Home
Class 12
MATHS
let f(x)=-|x-2| , x<= 3 and f(x)=x^2-2x-...

let `f(x)=-|x-2| , x<= 3` and `f(x)=x^2-2x-4 , x > 3 `Then the number of critical points on the graph of the function is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(-|x-2|, ,x le 3 ),(x^(2)-2x-4,, x gt 3 ):} Then the number of critical points on the graph of the function is

Let f(x)={{:(-|x-2|, ,x le 3 ),(x^(2)-2x-4,, x gt 3 ):} Then the number of critical points on the graph of the function is

Let ={x^((3)/(5)), if x f(x)={x^((3)/(5)), if x Then the number of critical points on the graph of the function is _(-)

Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx >1 Then the number of critical points on the graph of the function is___

Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx >1 Then the number of critical points on the graph of the function is___

Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx >1 Then the number of critical points on the graph of the function is___

L et f(x)={{:(x^(3/5),if xlt=1),(-(x-2)^3,ifx >1):} Then the number of critical points on the graph of the function is___

Led a function f be defined as f(x)=[(|x-1|)/(x^(2)+1) if x>-1 and x^(2) if x>=-1 Then the number of critical point(s) on the graph of this function is/are:

Let f(x)={:[(x^(3//5", ")ifxle1),(-(x-2)^(3)ifxgt1):},"then the number of" critical points on the graph of the function are……. .

The number of critical points of the function f(x)=|x-1||x-2| is