Home
Class 10
MATHS
x sin((1)/(x))(dx)/(dx)rarr y sin((x)/(x...

x sin((1)/(x))(dx)/(dx)rarr y sin((x)/(x))*x

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (x^(2)dy)/(dx)cos((1)/(x))-y sin((1)/(x))=-1, where y rarr las x rarr oo is (A) y=sin((1)/(x))+cos((1)/(x))(B)y=(x+1)/(x sin((1)/(x))) (C) y=sin((1)/(x))-cos((1)/(x))(D)y=(x)/(x cos((1)/(x)))

The solution of (dy)/(dx) = (y + x tan.(y)/(x))/(x) rArr sin.(y)/(x) =

(dy) / (dx) = (y) / (x) + sin ((y) / (x))

(dy)/(dx)tany=sin(x+y)+sin(x-y)

∫sin^(-1) √(x/(a+x)) dx

If (dy)/(dx)=(y+xtan(y)/(x))/(x) then sin (y)/(x)=

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If a=lim_(x rarr oo)(sin x)/(x)&b=lim_(x rarr0)(sin x)/(x) Then int_(a)^(b)(log(1+x))/(1+x^(2))dx is equal to