Home
Class 9
MATHS
" (ii) "(a+b)^(-1),(a^(-1)+b^(-1))...

" (ii) "(a+b)^(-1),(a^(-1)+b^(-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (a + b)^(-1) (a^(-1) + b^(-1))

Prove that (a+b)^(-1)(a^(-1)+b^(-1))=(1)/(ab)

If (log)_3x=a and (log)_7x=b , then which of the following is equal to (log)_(21)x ? a b (b) (a b)/(a^(-1)+b^(-1)) 1/(a+b) (d) 1/(a^(-1)+b^(-1))

For non-singular square matrix A ,\ B\ a n d\ C of the same order (A B^(-1)C)^(-1)= A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

If log_(3)x=a and log_(7)x=b, then which of the following is equal to log_(21)x?ab(b)(ab)/(a^(-1)+b^(-1))(1)/(a+b)(d)(1)/(a^(-1)+b^(-1))

(a+b)^(-1)(a^(-1)+b^(-1))=a^(x)b^(y), find x+y+2

If the matrices A, B (A + B) are non - singular, then [A(A+B)^(-1) B]^(-1) . a) A^(-1)B^(-1) b) B^(-1)+A^(-1) c) B^(-1)A^(-1) d)None of these

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

For non-singular square matrix A ,\ B\ a n d\ C of the same order then, (A B^(-1)C)^(-1)= (a) A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)