Home
Class 10
MATHS
If A B C D is quadrilateral and Ea n dF ...

If `A B C D` is quadrilateral and `Ea n dF` are the mid-points of `A Ca n dB D` respectively, prove that ` vec A B+ vec A D` +` vec C B` +` vec C D` =4 ` vec E Fdot`

Text Solution

Verified by Experts

`therefore` Position vector of `E=frac{1}{2}(vec{a}+vec{c})`

`F` is the mid point of `B D`

`therefore` Position vector of `F=frac{1}{2}(vec{b}+vec{d})`

`therefore vec{E F}=` position vector of `F=` position vector of `hat{t}`

`=frac{1}{2}(vec{b}+vec{d})-frac{1}{2}(vec{a}+vec{c}) `

`=frac{1}{2}(vec{b}+vec{d}-vec{a}-vec{c}) `

`text { Now } vec{A B}+vec{A D}+vec{C B}+vec{C D}=(vec{b} cdot vec{a})+(vec{d}-vec{c})+(vec{d}-vec{c}) `

...
Promotional Banner

Topper's Solved these Questions

  • SURFACE AREAS AND VOLUMES

    RD SHARMA|Exercise All Questions|417 Videos
  • TRIGONOMETRIC IDENTITIES

    RD SHARMA|Exercise All Questions|254 Videos

Similar Questions

Explore conceptually related problems

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then A vec(B) + C vec(B) +C vec (D) + vec(AD) is equal to

A,B,C,D are any four points,prove that vec AB*vec CD+BC*vec AD+vec CA*vec BD=0

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

A B C D isa parallelogram with A C a n d B D as diagonals. Then, vec A C- vec B D= 4 vec A B b. 3 vec A B c. 2 vec A B d. vec A B

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

RD SHARMA-TRIANGLES-All Questions
  1. In a triangle A B C , let P a n d Q be points on A Ba n dA C respecti...

    Text Solution

    |

  2. A B C is an isosceles triangle with A B=A C and D is a point on A C su...

    Text Solution

    |

  3. If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n d...

    Text Solution

    |

  4. Through the mid-point M of the side C D of a parallelogram A B C D , t...

    Text Solution

    |

  5. In a A B C ,D and E are points on sides A Ba n dA C respectively such...

    Text Solution

    |

  6. Let A B C be a triangle and Da n dE be two points on side A B such tha...

    Text Solution

    |

  7. The side B C of a triangle A B C is bisected at D ;o is any point in A...

    Text Solution

    |

  8. In Figure, A B C is a triangle in which A B=A Cdot Point Da n dE are p...

    Text Solution

    |

  9. In the given figure The bisector of interior /A of A B C meets B C in...

    Text Solution

    |

  10. In three line segments O A ,O Ba n dO C , point L ,M ,N respectively a...

    Text Solution

    |

  11. O is any point inside a triangle A B C . The bisector of /A O B ,/B O ...

    Text Solution

    |

  12. ABCD is a quadrilateral in which AB=AD . The bisector of  BAC A...

    Text Solution

    |

  13. In A B C ,D is the mid-point of B Ca n dE D is the bisector of the /A...

    Text Solution

    |

  14. A D is a median of Delta A B C . The bisector of /A D B and /A D C...

    Text Solution

    |

  15. In Figure, A B C is a right triangle right angled at B and points Da n...

    Text Solution

    |

  16. In a triangle A B C , the angles at Ba n dC are acute. If B Ea n d C ...

    Text Solution

    |

  17. Prove that in any triangle the sum of squares of any to sides is equal...

    Text Solution

    |

  18. AD is an altitude of an equilateral triangle ABC. On AD as base...

    Text Solution

    |

  19. A ladder 15 m long reaches a window which is 9m above the ground on on...

    Text Solution

    |

  20. Prove that three times the sum of the squares of the sides of a tri...

    Text Solution

    |