Home
Class 12
MATHS
lim(n rarr oo)int(0)^(2)(1+(t)/(n+1))^(n...

lim_(n rarr oo)int_(0)^(2)(1+(t)/(n+1))^(n)dt" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_ (n rarr oo) [1-ln (1+ (1) / (n)) ^ (n-2)] is equal to

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n))) is equal to (i) e (ii) (1) / (e) (iii) 1 (iv) int (0rarr1) ln xdx

lim_(n rarr oo)(1-(2)/(n))^(n)

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) then 4(lim_(x rarr oo)sum_(x-1)^(n)(1)/(T_(r))) is equal to