Home
Class 12
MATHS
" ocus of the point "((e^(4)te^(4))/(2),...

" ocus of the point "((e^(4)te^(4))/(2),(e^(t)e^(-t))/(2))" is a hypertbola with eccenticity "

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of point ((e^(t)+e^(-t))/(2),(e^(t)-e^(-t))/(2)) is a hyperbola with eccentricity

The locus of the point ( (e^(t) +e^(-t))/( 2),(e^t-e^(-t))/(2)) is a hyperbola of eccentricity

The locus of the point ( (e^(t) +e^(-t))/( 2),(e^t-e^(-t))/(2)) is a hyperbola of eccentricity

Assertion (A): The locus of the point ((e^(2t)+e^(-2t))/(2), (e^(2t)-e^(-2t))/(2)) when 't' is a parameter represents a rectangular hyperbola. Reason (R ) : The eccentricity of a rectangular hyperbola is 2.

Assertion (A): The locus of the point ((e^(2t)+e^(-2t))/(2), (e^(2t)-e^(-2t))/(2)) when 't' is a parameter represents a rectangular hyperbola. Reason (R ) : The eccentricity of a rectangular hyperbola is 2.

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt

The equations x=(e^t+e^(-t))/2,y=(e^(t)-e^(-t))/2, t inR represent :

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=