Home
Class 11
MATHS
If A,B and C are positive such that A+B+...

If `A,B and C` are positive such that `A+B+C=pi;` find then the minimum value of `(cos(A-B)/2)/(cos(A+B)/2)+(cos(B-C)/2)/(cos(B+C)/2)+(cos(C-A)/2)/(cos(C+A)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC

Let A,B,C be the three angles such that A+B+C=pi , tan A.tan B=2 , then find the value of (cos A cos B)/(cos C)

Let A,B,C be the three angles such that A+B+C=pi , tan A.tan B=2 , then find the value of (cos A cos B)/(cos C)

If A+B+C=pi then the value of cos ^(2)A + cos ^(2) B+ cos ^(2)C is-

(cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

If A+B+C=pi then prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4cos((pi-A)/(4))cos((pi-B)/(4))cos((pi-C)/(4))

If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)

If A+B+C=pi then prove that cos^(2)((A)/(2))+cos^(2)((B)/(2))-cos^(2)((C)/(2))=2cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A+B+C = pi show that cos^2 (A/2)-cos^2 (B/2)-cos^2 (C/2)=-2sin(A/2)cos(B/2)cos(C/2)