Home
Class 11
MATHS
|[5^(2),5^(3),5^(4)],[5^(1),5^(2),5^(3)]...

|[5^(2),5^(3),5^(4)],[5^(1),5^(2),5^(3)],[5^(3),5^(4),5^(5)]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(5^(2),5^(3),5^(4)),(5^(3),5^(4),5^(5)),(5^(4),5^(6),5^(7))| is -

|{:(5^2,5^3,5^4),(5^1,5^2,5^3),(5^3,5^4,5^4):}|=.......

The value of |[5^2 ,5^3, 5^4], [5^3, 5^4, 5^5], [5^4, 5^5, 5^6]| is (a) 5^2 (b) 0 (c) 5^(13) (d) 5^9

The value of Delta= [[5^2 , 5^3 , 5^4],[ 5^3 , 5^4 , 5^5],[ 5^4 , 5^6 , 5^7 ]] is

The sum of the infinite series,1^(2)-(2^(2))/(5)+(3^(2))/(5^(2))-(4^(2))/(5^(3))+(5^(2))/(5^(4))......is

Find the sum of each of the following infinite geometric series, if it exists : (2)/(5) + (3)/(5^(2)) + (2)/(5^(3)) + (3)/(5^(4)) + (2)/(5^(5)) + (3)/(5^(6)) +…oo

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(3))+ (3^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .