Home
Class 12
MATHS
If Sr = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+...

If `S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]|` then `sum_(r=1)^nS_r` does not depend on-

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_r=|{:(2r,x,n(n+1)),(6r^2-1,y,n^2(2n+3)),(4r^3-2nr,z,n^3(n+1)):}| , then the value of sum_(r=1)^(n)S_r is independent of

If D_r=|[r,1,(n(n+1))/(2)],[2r-1,4,n^2],[2^(r-1),5,2^(n)-1]| then, sum_(r=1)^n D_r

If D_(r)=|(r,x,n(n+1)//2),(2r-1,y,n^(2)),(3r-1,z,n(3n+1)//2)| then sum_(r=1)^(n)D_(r)=

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is