Home
Class 12
MATHS
sin(pi)/(3)-sin^(-1)[(-1)/(2)]" is equal...

sin(pi)/(3)-sin^(-1)[(-1)/(2)]" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

sin[pi/2-sin^(-1)(-(1)/(2))] is equal to:

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

sin^-1[sin((7pi)/6)] is equal to --

If sin^(-1)x+sin^(-1)y=(2pi)/(3)",then"cos^(-1)x+cos^(-1)y is equal to

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :