Home
Class 11
MATHS
" (19.) If "T(n)=sin^(n)theta+cos^(n)the...

" (19.) If "T_(n)=sin^(n)theta+cos^(n)theta," prove that ":2T_(6)-3T_(4)+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the trigonometric identities: If T_(n)=sin^(n)theta+cos^(n)theta, prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

If T_(n)=sin^(n)x+cos^(n)x, prove that 2T_(6)-3T_(4)+1=0

If T_(n)=sin^(n)theta+cos^(n)theta ,prove that (i)(T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3)) (ii) 2T_(6)-3T_(4)+1=0 (iii) 6T_(10)-15T_(8)+10T_(6)-1=0

If T_(n)=sin ^(n) theta+cos ^(n) theta . prove that (T_(3)-T_5)/(T_1)=(T_5-T_7)/(T_3) .

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If T_(n)=sin^(n)theta+cos^(n)theta then (T_(3)-T_(5))/(T_(1))=?

If T_n = sin^(n)theta + cos^(n)theta then prove that (T_5 -T_3): (T_7- T_5) = T_1 :T_3 .

If P_(n) = cos ^(n)theta + sin^(n)theta then 2. P_(6) - 3. P_(4) + 1 =

If u_(n) = cos^(n) theta + sin^(n) theta then 2u_(6)-3u_(4)=