Home
Class 12
MATHS
If a,a1,a2,....,a10, b are in A.P. and a...

If `a,a_1,a_2,....,a_10, b` are in A.P. and `a,g_1,g_2,....,g_10, b` are in G.P. and h is the H.M. betweein a and b, then `(a_1+a_2+...+a_10)/(g_1g_10)+(a_2+a_3+....+a_9)/(g_2g_9)+......+(a_5+a_6)/(g_5g_6)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

Let a_1,a_2 ,…. , a_10 be in A.P. and h_1,h_2 …. h_10 be in H.P. If a_1=h_1=2 and a_10 = h_10 =3 , then a_4 h_7 is :

Let a_1,a_2 ,…. , a_10 be in A.P. and h_1,h_2 …. h_10 be in H.P. If a_1=h_1=2 and a_10 = h_10 =3 , then a_4 h_7 is :