Home
Class 11
MATHS
int(x^(6)-1)/(x^(2)+1)dx=(x^(5))/(5)-(x^...

`int(x^(6)-1)/(x^(2)+1)dx=(x^(5))/(5)-(x^(3))/(3)+x+k tan^(-1)x+C` then k=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(2)^(3)(1)/(x^(2)+5x+6)dx =

int(x^(5)dx)/((x^(2)+x+1)(x^(6)+1)(x^(4)-x^(3)+x-1))

int x^(6)sin(5x^(7))dx=(k)/(5)cos(5x^(7))+c, then k=

int(x^(3)+5)/((x-5)^(3)(x-1))dx

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int(x^(2)+3)/(x^(6)(x^(2)+1))dx=-(a)/(x)+(b)/(3x^(3))-(d)/(5x^(5))-2tan^(-1)x+c

If int(2)/(1-x^(4))dx = k log[(1+x)/(1-x)]+tan^(-1)x + c then k=

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

int(x^(4)+1)/(x^(6)+1)dx(1)tan^(-1)x-tan^(-1)x^(3)+c(2)tan^(-1)x-(1)/(3)tan^(-1)x^(3)+c(3)tan^(-1)x+tan^(-1)x^(3)+c(4)tan^(-1)x+(1)/(3)tan^(-1)x^(3)+c