Home
Class 12
MATHS
d/(dx)(sin^(-1)x+cos^(-1)x) is equal to ...

`d/(dx)(sin^(-1)x+cos^(-1)x)` is equal to : (A) `(1)/(sqrt(1-x^(2))),` (B) `(2)/(sqrt(1-x^(2))),` (C) `0` (D) `sqrt(1-x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

(d)/(dx){sin^(-1)(e^(x))} is equal to (a) e^(x)sin^(-1)(e^(x)) (b) (e^(x))/(sqrt(1-e^(2x))) (c) (e^(x))/(1-e^(x)) (d) e^(x)cos^(-1)x]]

(d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to x, if -(1)/(sqrt(2))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=