Home
Class 12
MATHS
Show that the system of equations 3x-y +...

Show that the system of equations `3x-y + 4z = 3, x + 2y-3z =-2` and `6x + 5y + lambdaz=-3` has at least one solution for any real number `lambda.` Find the set of solutions of `lambda =-5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the system of eqations 3x - y + 4z = 3, x + 2y - 3z = -2, 6x + 5y + lambda z = -3 has atleast one solution for every real lambda , Find the set of solutions when lambda = -5

If the system of equations 3x-y+4z=3,x+2y-3z=-2 and ,6x+5y+ lambda z=-3 has infinite number of solutions then lambda =

If the system of equations 3x-y+4z=3,x+2y-3z=-2, and 6x+5y+ lambda z =-3 has infinite number of solutions ,then lambda=

The system of equations 3x-y+4z=3, x+2y-3z=-2,6x+5y+lamdaz=-3 has non trival solution then

consider the system of equations : ltbr. 3x-y +4z=3 x+2y-3z =-2 6x+5y+lambdaz =-3 Prove that system of equation has at least one solution for all real values of lambda .also prove that infinite solutions of the system of equations satisfy (7x-4)/(-5)=(7y+9)/(13)=z

consider the system of equations : ltbr. 3x-y +4z=3 x+2y-3z =-2 6x+5y+lambdaz =-3 Prove that system of equation has at least one solution for all real values of lambda .also prove that infinite solutions of the system of equations satisfy (7x-4)/(-5)=(7y+9)/(13)=z

The system of the linear equations x + y – z = 6, x + 2y – 3z = 14 and 2x + 5y – lambdaz = 9 (lambda in R) has a unique solution if

If system of equation x + y + z = 6 x + 2y + 3z = 10 3x + 2y + lambda z = mu has more than two solutions. Find (mu -lambda )

If the system of linear equations x+y+z=6, x+2y+3z=14 and 2x +5y+ lambdaz=mu(lambda,mu ne R) has a unique solution if lambda is