Home
Class 12
MATHS
tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+ta...

`tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x >0)` is true if

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Prove that: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

Prove that, tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/sqrt3

Prove that tan ^(-1) x+tan ^(-1) ((2 x)/(1-x^2))=tan ^(-1)((3 x-x^3)/(1-3 x^2)),|x|lt1/sqrt3

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

tan^(-1)2x+tan^(-1)3x=(pi)/(4)