Home
Class 12
MATHS
Value of sin{tan^(-1)x+tan^(-1) (1/x)} i...

Value of `sin{tan^(-1)x+tan^(-1) (1/x)}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Fill in the blank choosing correct answer from the brackets The value of sin (tan^(-1) x + tan^(-1) 1/x, x gt 0_____ . (0,1,1/2)

What is the value of sin(tan^(-1)x+tan^(-1)frac[1][x]),xgt0 ?

Fill in the blanks choosing correct answer from the brackets. The value of "sin"("tan"^(_1)x+"tan"^(-1)1/(x)),xgt0= …. . (0,1,1//2)

Find value of sin(tan^(-1)x)

tan(sin^(-1)x)

Evaluate: (i) sin(tan^(-1)x+(tan^(-1)1)/(x)) for x>0( ii) cot(tan^(-1)a+cot^(-1)a)

tan(sin^(-1)x+cos^(-1)x)

Find the value of sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :