Home
Class 12
MATHS
Show that the least value of f(x)=cos^(-...

Show that the least value of `f(x)=cos^(- 1)x^2` in `[-1/(sqrt(2)),1/(sqrt(2))]` is `pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of the function f(x)= cos^(-1)x^2 in the interval [-1/sqrt2,1/sqrt2] is

Find the greatest & least value of f(x)=sin^(-1).(x)/(sqrt(x^(2)+1))-ln x in [(1)/(sqrt(3)), sqrt(3)] .

The greatest and least values of f(x)=tan^(-1)x -(1)/(2) ln x on [(1)/(sqrt(3)),sqrt(3)] are

The difference between the greatest and the least value of f(x)=cos(1)/(2)sin x,x in[0,pi] is (3sqrt(3))/(8) (b) (sqrt(3))/(8) (c) (3)/(8)(d)(1)/(2sqrt(2))

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

If f(x)=cos^(-1)x+cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then

Show that int_(0)^(1//2)(x sin^(-1)x)/(sqrt(1-x^(2)))dx = (1)/(2)-(sqrt(3))/(12)pi

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)