Home
Class 12
MATHS
Statement - 1: The function f(x) = {x}, ...

Statement - 1: The function `f(x) = {x},` where {.} denotes the fractional part function is discontinuous a `x = 1` Statement -2: `lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

The range of the function f(x) = frac{1-{x}}{1+{x}} is (where {.} denotes the fractional part of x )

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

Range of the function f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x} , where {*} denotes fractional part function

The range of f(x)=({x}^(2)-{x}+1)/({x}^(2)+{x}+1) (where {f} denotes fractional function) is