Home
Class 12
MATHS
If x=a cos^2 theta sintheta and y=a sin^...

If `x=a cos^2 theta sintheta` and `y=a sin^2 theta cos theta`, then `(x^2+y^2)^3/(x^2y^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= a cos^(2) theta sin theta and y= a sin^(2) theta cos theta , " then " ((x^(2)+y^(2))^(3))/(x^(2)y^(2))=

If x = a cos ^ (2) theta sin theta and y = a sin ^ (2) theta cos theta then ((x ^ (2) + y ^ (2)) ^ (3)) / (x ^ (2 ) and ^ (2)) =

If x= sin^(2)theta* cos theta and y=sin theta cos^(2)theta,"then" :

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

If x = a cos theta - b sin theta and y = a sin theta + b cos theta, prove that x^2 + y^2 = a^2 + b^2.

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =