Home
Class 12
MATHS
Find the value of sum(r=1)^(10)sum(s=1)...

Find the value of `sum_(r=1)^(10)sum_(s=1)^(10)tan^(-1)(r/s)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(10)sum_(s=1)^(10)tan^(-1)(r/s) is a) 20pi b) 25 pi c) 50pi d) 100pi

The value of sum_(r=1)^(10)r.r! is

The value of sum_(r=1)^(10)rP(r,r) is

Find the value of the sum_(r=1)^(n)sum_(s=1)^(n)delta_(rs)2^(r)3^(r) where delta_(rs) is zero if r!=s o* delta_(rs)^( prime),s one if r=s

sum_(s=1)^(10)sum_(r=0)^(s-1)(2^(s)-2^(r))

The value of sum_(r=0)^(n)sum_(s=1)^(n)*^(n)C_(5)*^(s)C_(r) is

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

The value of sum int_(r=1)^(r=10)rC(10,r) is

If the sum sum_(n=1)^(10)sum_(m=1)^(10)tan^(-1)((m)/(n))=k pi, find the value of k

If A=pi/5, then find the value of sum_(r=1)^8tan(r A)tan((r+1)A)dot