Home
Class 12
MATHS
If f(x)=int(1/x^2)^(x^2)cos sqrt(t)dt, t...

If f(x)=`int_(1/x^2)^(x^2)cos sqrt(t)dt`, then f'(1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

If int_(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=1+x+int_(1)^(x)(ln^(2)t+2ln t)dt then f(x) increases in

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)= int_(x)^(x^(2))1/((log t)^2)dt ,x ne 1 then f(x)is monotomically