Home
Class 11
MATHS
If I(1)=int(0)^( pi/2)(sin x)^(sqrt(3)+1...

If `I_(1)=int_(0)^( pi/2)(sin x)^(sqrt(3)+1)dx,I_(2)=int_(0)^(pi/2)(sin x)^(sqrt(3)-1))dx` then `(I_(1))/(I_(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sqrt(1-sin x)dx

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

If I_(1)=int_(0)^((pi)/(2))(x)/(sin x)dx and I_(2)=int_(0)^(1)(tan^(-1)x)/(x)dx, then (I_(1))/(I_(2))=(A)1(B)(1)/(2) (C) 2 (D) (pi)/(2)

If I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx , then :

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I_(1)=int_(0)^( pi)x sin xe^(cos4x)dx , and I_(2)=int_(0)^( pi/2)cos xe^(cos4x)dx ,then the value of [(I_(1))/(I_(2))] is (where [.] denotes the greatest integer function)