Home
Class 12
MATHS
The multiplicative inverse of non-zero ...

The multiplicative inverse of non-zero complex `z=x+iy` is
`(x-iy)/(x^(2)-y^(2))`
`(x-iy)/(x^(2)+y^(2))`
`(x+iy)/(x^(2)+y^(2))`
`(-x+iy)/(x^(2)+y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The multiplicative inverse of z=x+iy is

Multiplicative inverse of x+ iy is O (x-iy)/(x^(2)+y^(2)) O (x+iy)/(x^(2)+y^(2)) O (x-iy)/(x^(2)-y^(2)) O (x+iy)/(x^(2)-y^(2))

If (1+i)^(100)=2^(49)(x+iy) then x^(2)+y^(2)=

If (1+i)^(100)=2^(49)(x+iy) then x^(2)+y^(2)=

z=x+iy , prove that ((z)/bar(z)+(bar(z))/(z))=2((x^(2)-y^(2))/(x^(2)+y^(2)))

If (a+ib)/(c+id)=x+iy, prove that(i) (a-ib)/(c-id)=(x-iy)( ii) (a^(2)+b^(2))/(c^(2)+d^(2))=(x^(2)+y^(2))

If (a+ib)/(c+id)=x+iy, prove that (a-ib)/(c-id)=x-iy and (a^(2)+b^(2))/(c^(2)+d^(2))=x^(2)+y^(2)

find the real no.x and y if (x+iy)

If (a+ib)(x+iy)=(a^(2)+b^(2))i , then (x,y) is