Home
Class 12
MATHS
The circle (x-2)^(2)+(y-5)^(2)=a^(2) wil...

The circle `(x-2)^(2)+(y-5)^(2)=a^(2)` will be inside the circle `(x-3)^(2)+(:y-6)^(2)=b^(2)` if

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle (x-2) ^(2) + (y -3) ^(2)=a ^(2) lies entirely in the circle x ^(2) + y ^(2) =b ^(2), then

The circle x ^(2) + y ^(2) =9 is contained in the circle x ^(2) + y ^(2) - 6x - 8y + 25=c^(2) If

If the circle x^(2)+y^(2)+2a_(1)x+c=0 lies completely inside the circle x^(2)+y^(2)+2a_(2)x+c=0 then

A point which is inside the circle x^(2)+y^(2)+3x-3y+2=0 is :

A tangent at a point on the circle x^(2)+y^(2)=a^(2) intersects a concentric circle C at two points P and Q. The tangents to the circle X at P and Q meet at a point on the circle x^(2)+y^(2)=b^(2). Then the equation of the circle is x^(2)+y^(2)=abx^(2)+y^(2)=(a-b)^(2)x^(2)+y^(2)=(a+b)^(2)x^(2)+y^(2)=a^(2)+b^(2)

The point (1,2) lies inside the circle x^(2)+y^(2)-2x+6y+1=0 .

chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)=81 to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=16 , then the value of b is

If the circle x^(2)+y^(2)+2gx+2fy+c=0 bisects the circumference of the circles x^(2)+y^(2)=6,x^(2)+y^(2)-6x-4y+10=0 and x^(2)+y^(2)+2x+2y-2=0