Home
Class 12
MATHS
x rarr-oo(x^(4)sin(1/x)+x^(2))/(1+|x|^(3...

x rarr-oo(x^(4)sin(1/x)+x^(2))/(1+|x|^(3)) equals-

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr-oo)(x^(4)sin((1)/(x))+x^(2))/(1+|x^(3)|)

lim_(x rarr oo)((1+x+x^(2)))/((ln x)^(3)) is equal to

lim_(x rarr0)[(sin x sin^(-1)x-x^(2))/(x^(6))] equals

The value of lim_(x rarr oo) {(x^(2)sin ((1)/(x))-x)/(1-|x|)} is :

lim_(x rarr oo)(x^(2)sin((1)/(x))+x+1)/(x^(2)+x+1) is equal to

lim_ (x rarr-oo) [(x ^ (4) sin ((1) / (x)) + x ^ (2)) / ((x + | x | ^ (3)))] =

lim_ (x rarr oo) (x ^ (4) sin ((1) / (x)) + x ^ (3)) / (1+ | x | ^ (3))

lim_(x rarr oo)x sin(1/x)=

lim_(x rarr-oo)(x^(2)*sin((1)/(x)))/(sqrt(9x^(2)+x+1)) is equal to