Home
Class 11
MATHS
If z=1-costheta+isintheta,\ t h e n\ |z|...

If `z=1-costheta+isintheta,\ t h e n\ |z|` is a. `2sin(theta/2)` b. `2cos(theta/2)` c. `2\ |sin(theta/2)|` d. `2\ |cos(theta/2)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=1-costheta+isintheta,\ t h e n\ |z| is equal to a. 2sin(theta/2) b. 2cos(theta/2) c. 2\ |sin(theta/2)| d. 2\ |cos(theta/2)|

If z=1-cos theta+i sin theta, then |z|=2(sin theta)/(2) b.2(sin theta)/(2)c.2|(sin theta)/(2)|d.2|(cos theta)/(2)|

If z=1/(1-cos theta-i sin theta), then Re(z) is a. 0 b. 1/2 c. cot(theta/2) d. 1/2 cot (theta/2)

If z=(1)/(1-cos theta-i sin theta), then Re(z) is a.0 b.(1)/(2) c.cot((theta)/(2)) d.(1)/(2)cot((theta)/(2))

If tan\ theta/2=cosectheta-sintheta, then- a. sin^2\ theta/2=2sin^2\ 18^@ b. cos2theta+2costheta+1=0 c. sin\ theta/2=4sin^2\ 18^@ d. cos2theta+2costheta-1=0

If tan\ theta/2=cosectheta-sintheta, then- a. sin^2\ theta/2=2sin^2\ 18^@ b. cos2theta+2costheta+1=0 c. sin\ theta/2=4sin^2\ 18^@ d. cos2theta+2costheta-1=0

cos^4theta- sin^4theta is equal to.............. (a) 1 -2 sin^2(theta/2) (b) 2cos^2theta-1 (c) 1+2sin^2(theta/2) (d) 1+2cos^2theta

17*cos^(4)theta-sin^(4)theta is equal to (a)1-2sin^(2)((theta)/(2))(b)2cos^(2)theta-1(c)1+2sin^(2)((theta)/(2))(d)1+2cos^(2)theta

csc theta - 2 cos theta * cot 2 theta = A) 2 sin theta B) sin 2 theta C) 2 cos theta D) cos 2 theta

If costheta + sin theta = sqrt2 cos theta , prove that cos theta - sin theta = sqrt2 sin theta .