Home
Class 12
MATHS
Let f(x)=int0^x|log2(log3(log4(cost+a)))...

Let `f(x)=int_0^x|log_2(log_3(log_4(cost+a)))|dt` be increasing for all real value of x, then the range of 'a'

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=log(log_(1//3)(log_(7)(sinx+a))) be defined for every real value of x, then the possible value of a is

Let f(x)=log(log)_(1/3)((log)_7(sinx+a))) be defined for every real value of x , then the possible value of a is 3 (b) 4 (c) 5 (d) 6

Let f(x)=log(log)_(1/3)((log)_7(sinx+a))) be defined for every real value of x , then the possible value of a is 3 (b) 4 (c) 5 (d) 6

Let f(x) be a function such that f(x)=log_((1)/(3))(log_(3)(sin x+a)). If f(x) is decreasing for all real values of x, then

f(x) be a differentiable function such that f'(x)=(1)/(log_(3)(log_((1)/(4))(cos x+a)))* If f(x) is increasing for all values of x, then

Let f(x)=log_(1//3)((log)_(1/3)((log)_7(sinx+a)) be defined for every real value of x , then the possible value(s) of a is (a) 3 (b) 4 (c) 5 (d) 6

Leg f(x)=log(log_(1/3)(log_((1)/(3))(log_(7)(sin x+a)))) be defined for every real value of x, then the possible value of a is 3 (b) 4(c)5(d)6

Let f(x) be a function such that f'(x) = log_(1//3) [log_(3) (sin x + a)] .If f(x) is decreasing for all real values of x, then a) a in (1, 4) b) a in (4, oo) c) a in (2, 3) d) a in (2, oo)

Let f(x) be a function such that f'(x)=log_(1/3) [log_(3)(sin x+a)] . If f(x) is decreasing for all real values of x then a gt k , find k.

Let f(x) be a function such that f(x)=log_((1)/(2))[log_(3)(sin x+a]. If f(x) is decreasing for all real values of x, then a in(1,4)( b) a in(4,oo)a in(2,3)(d)a in(2,oo)