Home
Class 12
MATHS
Prove that: inta^b(f(x))/(f(x)+f(a+b-x...

Prove that: `int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^( Prove that: )(f(x))/(f(x)+f(a+b-x))dx=(b-a)/(2)

int_(a)^(b)(f(x)dx)/(f(x)+f(a+b-x))=(1)/(2)(b-a)

Evaluate each of the following integral: int_a^b(f(x))/(f(x)+f(a+b-x))dx

Evaluate each of the following integral: int_a^b(f(x))/(f(x)+f(a+b-x))dx

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx. Hence evaluate : int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (f) int_(0)^(pi)(xdx)/(a^(2)cos^(2)x + b^(2)sin^(2)x)

Prove that \int_{a}^b f(x) dx = \int_{a}^b f(a+b-x) dx

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .