Home
Class 11
MATHS
If the number of functions that f : {1, ...

If the number of functions that `f : {1, 2, 3,... 1999} -> {2000, 2001, 2002, 2003}` satisfy the condition that `f(1)+f(2)+....+f(1999)` is odd, are `2^p`. Then sum of digits of P is given by

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of functions f: {1,2, 3,... n}-> {2016, 2017} , where ne N, which satisfy thecondition f1)+f(2)+ ...+ f(n) is an odd number are

The number of functions f: {1,2, 3,... n}-> {2016, 2017} , where ne N, which satisfy thecondition f1)+f(2)+ ...+ f(n) is an odd number are a. 2^n b. n*2^(n-1) c. 2^(n-1) d. n!

A function f:R rarr R satisfies the condition x^(2)f(x)+f(1-x)=2x-x^(4). Then f(x) is

If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,x ne 0 then f(x) is

Consider the function f: A -> A where A:{1,2,3,4,5} which satisfy the condition f(f(x))=x, If the number of such functions are lambda, then

If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(1996) = odd integer are formed, the number of such functions can be

Consider the function f:A rarr A where A:{1,2,3,4,5} which satisfy the condition f(f(x))=x, If the number of such functions are lambda, then

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then