Home
Class 12
MATHS
[" Let "f(x)=cos2x*cos4x*cos6x*cos8x*cos...

[" Let "f(x)=cos2x*cos4x*cos6x*cos8x*cos10x," then "lim_(x rarr0)(1-(f(x))^(3))/(5sin^(2)x)" equals : "],[[" (a) "660," (b) "135," (c) "132," (d) "66]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=cos2x*cos4x*cos6x*cos8x.cos10x then lim_(x rarr0)(1-(f(x))^(3))/(55sin^(2)x) equals

lim_(x rarr0)(1-cos x)/(x)

lim_(x rarr0)x cos(1/x)

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)(|cos(sin(3x))|-1)/(x^(2)) equals

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to

lim_(x rarr0)(1-cos x^(@))/(x^(2))

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x rarr0)(1-cos mx)/(x^(2))

lim_(x rarr0)(x)/(cos^(-1)x)