Home
Class 12
MATHS
int(0)^((pi)/(2))(dx)/(1+tan^(3)x)=...

int_(0)^((pi)/(2))(dx)/(1+tan^(3)x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2)) (dx)/( 1+ tan x) is

int_(0)^((pi)/(2))(1)/(1+tan x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))=int_(0)^((pi)/(2))(dx)/(1+sqrt(cot x))=(pi)/(4)

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

Evaluate :int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

int_(0)^((pi)/(2))(1)/(cot x+tan x)dx