Home
Class 12
MATHS
sumcos^2alpha1=sumcos^2beta1=sumcos^2gam...

`sumcos^2alpha_1=sumcos^2beta_1=sumcos^2gamma_1=1and sumcosalpha_1 cosbeta_1=sumcosbeta_1cosy_1=sumcosy_1cosalpha_1=0` Then, find the value of `|[cosalpha_1, cosalpha_2, cosalpha_3],[cosbeta_1, cosbeta_2 ,cosbeta_3],[cosgamma_1, cosgamma_2, cosgamma_3]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum cos^2 alpha_1=sum cos^2beta_1= sum cos^2 gamma_1=1; sum cosalpha_1 cosbeta_1= sum cosbeta_1 cos gamma_1= sum cos alpha_1 cos gamma_1=0 then |[cos alpha_1, cos alpha_2, cos alpha_3] , [cos beta_1, cos beta_2, cos beta_3] , [cos gamma_1, cos gamma_2, cos gamma_3]|^2= (i)1 (ii)-1 (iii)0 (iv) none of these

[{:(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta)):}]=

If alpha and beta are the roots of x^2-px+q=0, then the value of |[1,cos(beta-alpha),cosalpha],[cos(alpha-beta),1,cosbeta],[cosalpha,cosbeta,1]| is

If alpha+beta=90^(@) , then find the value of cotbeta+cosbeta-(cosbeta)/(cosalpha)(1+sinbeta)

If cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0 , then the value of cos3alpha+cos3beta+cos3gamma is

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .