Home
Class 12
MATHS
" 16.If "n" is a positive integer,prove ...

" 16.If "n" is a positive integer,prove that "sum_(r=1)^(n)r^(3)*((^(n)C_(r))/(^(n)C_(r-1)))^(2)=(n(n+1)^(2)(n+2))/(12)

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer,then sum_(r=1)^(n)r^(2)*C_(r)=

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

If n is a positive integer,then sum_(r=2)^(n)r(r-1)*C_(r) =

Prove that sum_(r = 1)^n r^3 ((n_C_r)/(C_(r - 1)))^2 = (n (n + 1)^2 (n+2))/(12)

Prove that sum_(r = 1)^n r^3 ((C_r)/(C_(r - 1))^2) = (n (n + 1)^2 (n+2))/(12)

If sum_(r=1)^(n)r^(3)((C(n,r))/(C(n,r-1)))=14^(2) then n=

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))