Home
Class 12
MATHS
" 1."fA=[[1,2],[2,1]]" and "f(x)=x^(2)-2...

" 1."fA=[[1,2],[2,1]]" and "f(x)=x^(2)-2x-3," show that "f(A)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[1,22,1]] and f(x)=x^(2)-2x-3 then show that f(A),=0

If A=[[1,22,1]] and f(x)=x^(2)-2x-3 show that f(A),=O

If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .

If A={:[(1,2),(2,1)]:} and f(x)=x^(2)-2x-3, show that f(A) = 0.

If A = [(1,2),(2,1)], f(x) = x^(2) - 2 x - 3 , show that f(A) = 0

If A = [(2,3),(-1,2)] f(x) = x^(2) - 4x + 7 show that f(A) = 0

If f(x)=x/(2^(x)-1) , then show that f(-1) = 2.

if f(x)=2x+1,1<=x<=2 and f(x)=x^(2)+1,2<=x<=3 then show that int_(1)^(3)f(x)dx=(34)/(3)

Let A={-1,0,1} and f={(x,x^(2)):x in A}. Show that f:A rarr A is neither one-one nor onto.