Home
Class 14
MATHS
(x)/(2)+(2y)/(3)=-1" And "x-(y)/(2)=3...

(x)/(2)+(2y)/(3)=-1" And "x-(y)/(2)=3

Promotional Banner

Similar Questions

Explore conceptually related problems

(x)/(2)+(2y)/(3)=-1 And x-(y)/(3)

(x) / (2) + (y) / (3) = 1 (x) / (3) + (y) / (2) = 1

The sum of the squares of the eccentricities of the conics (x^(2))/(4) + (y^(2))/(3) =1 and (x^(2))/(4) -(y^(2))/(3) = 1 is

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Solution (1+x sqrt(x^(2)+y^(2)))dx+y(-1+sqrt(x^(2)+y^(2)))dy=0 is x-(y^(2))/(2)+(1)/(3)(x^(2)+y^(2))^((3)/(2))+c=0

(5)/(8)x+(7)/(2)y=(3)/(2) (1)/(6)x-(2)/(3)y=1 If the ordered pair (x, y) satisfies the system of equations above, what is the sum of the values of x and y?

it x_(1)^(2) +2y_(1)^(2)+3z_(1)^(2)=x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2)=x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2)=2 " and " x_(2)x_(3) +2y_(2)y_(3)+3z_(2)z_(3)=x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1)=x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2)=1 Then find the value of |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|

Find the following products and verify the result for x=-1,y=-2:(3x-5y)(x+y)(2)(x^(2)y-1)(3-2x^(2)y)((1)/(3)x-(y^(2))/(5))((1)/(3)x+(y^(2))/(5))